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Pulmonary arterial hypertension (PAH) is caused by functional and structural changes in the pulmonary vasculature,
leading to increased pulmonary vascular resistance. The process of pulmonary vascular remodeling is accompanied
by endothelial dysfunction, activation of fibroblasts and smooth muscle cells, crosstalk between cells within the vas-
cular wall, and recruitment of circulating progenitor cells. Recent findings have reestablished the role of chronic vaso-
constriction in the remodeling process. Although the pathology of PAH in the lung is well known, this article is con-
cerned with the cellular and molecular processes involved. In particular, we focus on the role of the Rho family
guanosine triphosphatases in endothelial function and vasoconstriction. The crosstalk between endothelium and vas-
cular smooth muscle is explored in the context of mutations in the bone morphogenetic protein type II receptor, alter-
ations in angiopoietin-1/TIE2 signaling, and the serotonin pathway. We also review the role of voltage-gated K� chan-
nels and transient receptor potential channels in the regulation of cytosolic [Ca2�] and [K�], vasoconstriction,
proliferation, and cell survival. We highlight the importance of the extracellular matrix as an active regulator of cell
behavior and phenotype and evaluate the contribution of the glycoprotein tenascin-c as a key mediator of smooth
muscle cell growth and survival. Finally, we discuss the origins of a cell type critical to the process of pulmonary vas-
cular remodeling, the myofibroblast, and review the evidence supporting a contribution for the involvement of
endothelial-mesenchymal transition and recruitment of circulating mesenchymal progenitor cells. (J Am Coll Cardiol
2009;54:S20–31) © 2009 by the American College of Cardiology Foundation

ublished by Elsevier Inc. doi:10.1016/j.jacc.2009.04.018
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espite the recognized success of existing drug interven-
ions in the relief of symptoms of pulmonary arterial
ypertension (PAH), and possibly improvement in sur-
ival, most patients eventually become resistant to ther-
py and succumb to the disease. The past few years have
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een a remarkable increase in our knowledge of the
ellular and molecular mechanisms responsible for the
athobiology of PAH. This summary aims to present the
urrent state of our understanding of some of the key
echanisms (Fig. 1). We also indicate further areas and

irections of research and suggest novel approaches to
herapy.

ndothelial Dysfunction in PAH

ndothelial cells (ECs) are recognized as major regulators of
ascular function, and endothelial dysfunction has come to
ean a multifaceted imbalance in EC production of vasocon-

trictors versus vasodilators, activators versus inhibitors of
mooth muscle cell (SMC) growth and migration, prothrom-
otic versus antithrombotic mediators, and proinflammatory
ersus anti-inflammatory signals.
ho guanosine triphosphatases (GTPases) in endothelial
ysfunction. Rho (Ras homologous) GTP-binding proteins

egulate many cellular processes, including gene transcription,
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ifferentiation, proliferation, hypertrophy, apoptosis, phagocy-
osis, adhesion, migration, and contraction (1). In the
rototypical mechanism of RhoA GTPase signaling,
nvironmental cues, acting through G-protein– coupled
eceptors or receptor-dependent and receptor-independent
yrosine kinases, activate guanine nucleotide exchange factors,
hich induce exchange of guanosine diphosphate for GTP
inding and translocation of GTP-RhoA to the plasma mem-
rane. The membrane translocation requires post-translational
renylation. Upon translocation to the plasma membrane,
TP-RhoA activates its effectors, including the 2 isoforms of
ho kinase (ROCK), ROCK I (ROK�) and ROCK II

ROK�). Negative regulators of RhoA activation include
uanine nucleotide disassociation inhibitors, which oppose the
xchange of GTP for guanosine diphosphate; GTPase activat-
ng proteins, which catalyze dephosphorylation and inactiva-
ion of membrane-bound GTP-RhoA; statins, which inhibit
soprenylation of RhoA and thereby prevent translocation of

TP-RhoA to the cell membrane (2); and protein kinases A
nd G, which, by phosphorylating RhoA, also prevent mem-
rane translocation of the GTP-bound protein (3).
ho GTPases and EC permeability. An increase in EC
ermeability may be an important component of the patho-
enesis of PAH. The GTPases RhoA and Rac1 play
pposing roles in the regulation of EC barrier function.

hile stimuli such as thrombin activate RhoA/ROCK,
hich increases formation of F-actin stress fibers, cell

ontraction, and permeability, barrier-enhancing mediators
uch as sphingosine-1-phosphate and prostacyclin (PGI2)
timulate Rac1/p21-activated kinase (PAK), which coun-
eracts the effects of RhoA/ROCK and promotes cortical
-actin ring formation and barrier integrity (4). Pulmonary
rtery ECs cultured from chronically hypoxic piglets dem-
nstrate low Rac1 and high RhoA activities, which correlate
ith increased stress fiber formation and permeability (5).
ctivation of Rac1/PAK-1 and inhibition of RhoA reverse

hese changes.
ho GTPases and EC proliferation, migration, and

poptosis. Rho GTPases participate in EC proliferation
nd apoptosis. Interestingly, the hyperproliferative,
poptosis-resistant phenotype of PAH ECs may be due to
ersistent activation of signal transducer and activator of
ranscription 3 (6), a downstream target of Rho GTPases.
ignal transducer and activator of transcription 3 mediates
hoA-induced nuclear factor-�B and cyclin D1 transcrip-

ion and is involved in nuclear factor-�B nuclear transloca-
ion (7).

ole of rho GTPases in thrombosis. In situ thrombosis
f small peripheral pulmonary arteries contributes to
AH. The ECs are directly involved in the fibrinolytic
rocess through synthesis and release of the profibrino-

ytic tissue plasminogen activator and the antifibrinolytic/
rothrombotic plasminogen activator inhibitor (PAI)-1.
he stimulation of systemic artery EC PAI-1 expression
y angiotensin II, C-reactive protein, high glucose, and

onocyte adhesion is dependent on activation of RhoA/ n
OCK signaling. Similarly, EC
xpression of tissue factor, another
rothrombotic mediator, increased
n the pulmonary arteries (PAs) of
AH lungs, is upregulated by
hoA/ROCK signaling (8). The
hoA/ROCK and Rac/PAK sig-
aling pathways are implicated in
hrombin- and thromboxane A2-
nduced platelet activation and
ggregation (9).
itric oxide (NO) and PGI2.
ndothelial dysfunction in PAH

s reflected by reduced production
f the vasodilators/growth inhibi-
ors NO and PGI2 and increased
roduction of the vasoconstrictor/
o-mitogens, for example, endo-
helin-1 and thromboxane A2.
itric oxide signaling is mediated
ainly by the guanylate cyclase/

yclic guanosine monophosphate
cGMP) pathway. Degradation
f the second messenger of
O, cGMP, by phosphodies-

erases is mainly accomplished
y phosphodiesterase-5.
Reduced NO bioavailability in

AH can be due to decreased
xpression of endothelial NO syn-
hase (eNOS), inhibition of eNOS
nzymatic activity, and inactiva-
ion of NO by superoxide anion.
ctivation of endothelial RhoA/
OCK signaling can be involved

n at least the first 2 processes. For
xample, RhoA/ROCK activation
ediates hypoxia- and thrombin-

nduced inhibition of both eNOS
xpression and its activity in cul-
ured ECs (10). The activity of
rginase II, which reduces NO
ynthesis by competing with
NOS for the substrate L-
rginine, is increased in PAH
Cs (11), and RhoA/ROCK

ignaling mediates thrombin-
nd tumor necrosis factor-�/
ipopolysaccharide-induced ac-
ivation of eNOS (12). Patients
ith idiopathic PAH (IPAH)
ave increased plasma levels of
he endogenous inhibitor of
NOS, asymmetric dimethyl-
rginine (13), and the levels of asymmetric dimethylargi-

Abbreviations
and Acronyms

ALK � activin-receptorlike
kinase

Ang � angiopoeitin

BMP � bone
morphogenetic protein

BMPR � bone
morphogenetic protein
receptor

cGMP � cyclic guanosine
monophosphate

EC � endothelial cell

ECM � extracellular matrix

enMT � endothelial
mesenchymal transition

eNOS � endothelial nitric
oxide synthase

GTPase � guanosine
triphosphatase

5-HT � hydroxytryptamine
(serotonin)

5-HTT � hydroxytryptamine
(serotonin) transporter

IPAH � idiopathic
pulmonary arterial
hypertension

MLC � myosin light chain

MLCK � myosin light chain
kinase

MLCP � myosin light chain
phosphatase

NO � nitric oxide

PA � pulmonary artery

PAEC � pulmonary artery
endothelial cell

PAH � pulmonary arterial
hypertension

PAI � plasminogen-
activator inhibitor

PAK � p21-activated kinase

PASMC � pulmonary artery
smooth muscle cell

PGI2 � prostacyclin

PH � pulmonary
hypertension

PK � protein kinase

ROCK � Rho kinase

SMC � smooth muscle cell

TGF � transforming growth
factor

TRPC � canonical
transient receptor potential
ine and the enzyme that degrad
es it, dimethylarginine
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imethylaminohydrolase, are, respectively, increased and
ecreased in the PA endothelium of IPAH patients (13).
Prostacyclin stimulates the formation of cyclic adeno-

ine monophosphate, which also inhibits the proliferation
f SMCs and decreases platelet aggregation. A deficiency
f PGI2 and PGI2 synthase and an excess of thromboxane
re found in PAH (14). Moreover, PGI2-receptor knock-
ut mice develop more severe hypoxia-induced pulmo-
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Figure 1 Potential Mechanisms Involved in the Development of
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ngiopoietin-2 and angiopoietin-3/4, comprises a family of
rowth factors. The angiopoietin ligands exert their effects
hrough the endothelial-specific tyrosine kinase, TIE2 (17).
uring lung development, both Ang-1 and TIE2 are
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ecreted by vascular SMCs and pericytes, whereas TIE2 is a
ransmembrane receptor expressed on endothelial cells (18).
n the adult, Ang-1 expression in the lung is minimal,
hereas TIE2 expression remains constitutive (19).
Several lines of evidence suggest that Ang-1 regulates

athologic SMC hyperplasia in PAH. Ang-1 is overex-
ressed in most forms of nonfamilial PAH (18,20). In
AH, Ang-1 causes activation of the TIE2 receptor by

yrosine autophosphorylation in the pulmonary vascular
ndothelium (20,21). Enhanced TIE2 levels and a 4-fold
ncrease in TIE2 phosphorylation are found in human PAH
ung tissue, compared with control subjects (20,22).

Virally mediated overexpression of Ang-1 in the rat lung
esults in PH (21,23). Ang-1 transgenic animals show
ncreased pulmonary vascular endothelial TIE2 phosphory-
ation and SMC hyperplasia in small pulmonary arterioles.
urther, overexpression of a soluble TIE2 ectodomain,
hich sequesters Ang-1, suppresses the PH phenotype in
onocrotaline- and Ang-1–induced models of this disease (24).
There is a reciprocal relationship between bone morpho-

enetic protein receptor (BMPR) 1A and Ang-1 expression
n the lungs of patients with nonfamilial PAH (20). Ang-1
ownregulates BMPR1A expression through a TIE2 path-
ay in human pulmonary artery endothelial cells (PAECs).
timulation of human PAECs with Ang-1 induces release
f 5-hydroxytryptamine (HT [serotonin]), a potent stimu-
ator of SMC proliferation (21,22). There is controversy in
his field. In contrast to a causative role, Ang-1 has been
eported to protect against the development of PAH in the
at monocrotoline and hypoxia models of disease (25).

he SMC in PAH

erotonin, serotonin transporter, and receptors. Patients
ith IPAH have increased circulating 5-HT levels, even

fter heart-lung transplantation (26). In contrast to the
onstricting action of 5-HT on SMCs, which is mainly
ediated by 5-HT receptors 1B/D, 2A, and 2B (27), the
itogenic and co-mitogenic effects of 5-HT require inter-

alization through the serotonin transporter, 5-HTT (28).
hat may require co-stimulation of the 5-HT1B receptor

29). Drugs that competitively inhibit 5-HTT block the
itogenic effects of 5-HT on SMCs (30). The appetite

uppressants fenfluramine, d-fenfluramine, and aminorex
iffer from selective 5-HTT inhibitors in that they not only

nhibit 5-HT reuptake but also trigger indoleamine release
nd interact with 5-HTT and -HT receptors in a specific
anner (30).

EROTONIN TRANSPORTER. 5-HTT is abundantly expressed
n pulmonary artery smooth muscle cells (PASMCs) (31).
ice with targeted 5-HTT gene disruption develop less

evere hypoxic PH than do wild-type controls (32,33).
onversely, increased 5-HTT expression is associated with

ncreased severity of hypoxic PH (34,35). Indeed, specific
verexpression of 5-HTT in PASMCs is sufficient to

roduce spontaneous PH (33). p
-HT receptors in PH. Of the 14 distinct 5-HT recep-
ors, the 5-HT2A, 5-HT2B, and 5-HT1B receptors are
articularly relevant to PAH.

-HT2A RECEPTOR. In most nonhuman mammals, the
-HT2A receptor mediates vasoconstriction in both the
ystemic and pulmonary circulations (36). However, the
-HT2A receptor antagonist ketanserin is not specific for
he pulmonary circulation, and systemic effects have limited
ts use in PAH, where it fails to improve pulmonary
emodynamics significantly (37).

-HT2B RECEPTOR. The development of hypoxia-induced PH
n mice is ablated in 5-HT2B receptor knockout mice (38),
nd this receptor may control 5-HT plasma levels in mice.
owever, the 5-HT2B receptor may also mediate vasodila-

ion of the PA (39), and loss of the 5-HT2B receptor function
ay predispose to fenfluramine-associated PH in humans

40).

-HT1B RECEPTOR. The 5-HT1B receptor mediates constric-
ion in human PAs (41) and plays a role in the development
f PAH (36,42), because inhibition, either by genetic
nockout or pharmacologic antagonism, reduces hypoxia-
nduced pulmonary vascular remodeling (36). There is
ooperation between the 5-HT1B receptor and the 5-HTT
n mediating pulmonary vascular contraction (43). In addi-
ion, 5-HT1B receptor expression is increased in mice
verexpressing the human 5-HTT and in the fawn-hooded
at, which also demonstrates increased 5-HTT expression
43). Both these models are predisposed to hypoxia-induced
ulmonary vascular remodeling. Remodeled PAs from pa-
ients with PAH overexpress the 5-HT1B receptor. 5-HT1B
eceptor-mediated changes are specific to the pulmonary
irculation, making this receptor an attractive therapeutic
arget for PH.

-HT SYNTHESIS IN PH. The rate-limiting step in 5-HT bio-
ynthesis is catalyzed by the enzyme tryptophan hydroxylase.
lthough peripheral 5-HT is synthesized chiefly by the en-

erochromaffin cells in the gut, human PAECs produce 5-HT
nd express the tryptophan hydroxylase-1 isoform. Both 5-HT
ynthesis and tryptophan hydroxylase-1 expression are in-
reased in cells from patients with IPAH compared with
ontrols (44). Mice lacking tryptophan hydroxylase-1 are
esistant to hypoxia- and dexfenfluramine-induced PH
45,46).

� and Ca� channels in PAH. In PASMCs, the free
a2� concentration in the cytosol ([Ca2�]cyt) is an impor-

ant determinant of contraction, migration, and prolifera-
ion. The [Ca2�]cyt in PASMCs can be increased by:
) Ca2� influx through voltage-dependent Ca2� channels,
eceptor-operated Ca2� channels, and store-operated Ca2�

hannels; and 2) Ca2� release from intracellular stores (e.g.,
arcoplasmic reticulum) through Ca2� release channels
e.g., inositol 1,4,5-trisphosphate receptors and ryanodine
eceptors). Inward transport of Ca2� through Ca2� trans-

orters in the plasma membrane, such as the reverse mode
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f Na�/Ca2� exchanger, is also an important pathway for
ncreasing [Ca2�]cyt. In contrast, [Ca2�]cyt in PASMCs can
e decreased by: 1) Ca2� extrusion by the Ca2�-Mg2�

denosine triphosphatase (Ca2� pump) and by the forward
ode of Na�/Ca2� exchanger in the plasma membrane;

nd 2) Ca2� sequestration by the Ca2�-Mg2� adenosine
riphosphatase in the sarcoplasmic reticulum.

NHIBITION OF K� CHANNEL ACTIVITY. Decreased expression
nd/or function of K� channels leads to membrane depo-
arization and contributes to sustained elevation of [Ca2�]cyt
y: 1) activating voltage-dependent calcium channel
VDCC); 2) facilitating the production of inositol 1,4,5-
risphosphate, which stimulates the release of sarcoplasmic
eticulum Ca2� into the cytoplasm; and 3) promoting Ca2�

ntry through the reverse mode of Na�/Ca2� exchange.

OLE OF RECEPTOR-OPERATED AND STORE-OPERATED CA2�

HANNELS IN REGULATING [CA2�]CYT. The influx of Ca2�

hrough store-operated calcium channels, referred to as
apacitative Ca2� entry, is critical for refilling the empty
arcoplasmic reticulum with Ca2�. Store-operated calcium
hannels in vascular SMC include the transient receptor
otential channels. Some canonical transient receptor po-
ential (TRPC) channel genes are expressed in human
ASMCs and PAECs.
Proliferation of PASMC is associated with a significant

ncrease in messenger ribonucleic acid and protein expres-
ion of TRPC channels such as TRPC1, TRPC3, and
RPC6 (47,48). Inhibition of TRPC expression with an-

isense oligonucleotides markedly decreases the amplitude
f capacitative calcium entry and significantly inhibits
ASMC proliferation. Thus, upregulation of TRPC chan-
els may be a significant mechanism in the induction of
ASMC proliferation.

ATHOGENIC ROLE OF DOWNREGULATED KV CHANNELS AND

PREGULATED TRP CHANNELS. In PASMCs from IPAH
atients, the amplitude of whole-cell IK(V) and mRNA/
rotein expression levels of Kv channel subunits (e.g., Kv1.2
nd Kv1.5) are both significantly decreased in comparison
ith cells from controls or patients with secondary PH (49).
he downregulated Kv channels and decreased IK(V) are

ssociated with a more depolarized Em in IPAH PASMCs,
nd the resting [Ca2�]cyt is much higher than in PASMCs
rom controls. The magnitude of capacitative calcium entry,
voked by passive store depletion with cyclopiazonic acid, is
ignificantly greater in PASMCs from IPAH patients than
n cells from secondary PH patients. Enhanced capacitative
alcium entry, possibly by upregulation of TRPC channels,
ay represent a critical mechanism involved in the devel-

pment of severe PAH.

V CHANNELS, MITOCHONDRIAL METABOLISM, AND PAH.

arburg (50) proposed that a metabolic shift from oxida-
ive phosphorylation to glycolysis, occurring despite ade-
uate oxygen availability, was a characteristic of cancers.

ecent data suggest that PAH and cancer share this k
Warburg phenotype” (51,52). Both are characterized by
itochondrial hyperpolarization, depressed pyruvate dehy-

rogenase complex activity, and depressed H2O2 produc-
ion (53). In both, there is also an O2-independent perpet-
ation of the rapid, reversible metabolic/redox shifts that
ormally occur in response to hypoxia and initiate hypoxic
ulmonary vasoconstriction (54,55). This metabolic shift
reates a “pseudohypoxic environment” with glycolytic pre-
ominance and normoxic hypoxia-inducible factor-1� activa-
ion. The metabolic shift suppresses Kv1.5 expression, leading
o membrane depolarization and elevation of cytosolic K� and
a2�. In both PAH PASMCs and cancer cell lines, this

reates a proliferative, apoptosis-resistant phenotype.
As in familial PAH, PAH in the fawn-hooded rat is

eritable. The fawn-hooded rat’s PASMC mitochondrial
eticulum is fragmented even before PAH develops. The
bserved hyperpolarization of ��m and reduction in pro-
uction of reactive oxygen species also occurs in PASMCs
rom IPAH patients (51). In PAH, mitochondrial abnor-
alities that shift metabolism away from oxidative phos-

horylation toward glycolysis lead to a decreased electron
ux and reduced reactive oxygen species production, which
alsely signifies hypoxia, resulting in normoxic hypoxia-
nducible factor-1� activation. Both the hypoxia-inducible
actor-1� activation and the related decrease in Kv1.5
xpression are reversed by low doses of exogenous

2O2,,consistent with the redox theory for their etiology. A
ypoxia-inducible factor-1� dominant-negative construct
lso restores Kv1.5 expression in fawn-hooded rat PASMC
51). Decreased Kv expression is an emerging hallmark of
he PAH PASMC, occurring in human PAH (49,51) and
ll known experimental models (56–58). Interestingly, both
v channels involved in hypoxic pulmonary vasoconstriction

Kv1.5 and Kv2.1) are inhibited by the anorexigens (59) and
y 5-HT (60). In addition, endothelin-1 reversibly reduces
he Kv1.5 currents (61). Restoring Kv1.5 expression reduces
hronic hypoxic PH and restores hypoxic pulmonary vaso-
onstriction (62).

Mitochondrial therapy, for example, inhibition of pyru-
ate dehydrogenase kinase by dichloroacetate or Kv1.5 gene
herapy partially regresses both PAH and cancer (51,52,62),
onsistent with the concept that PAH and cancer share a
itochondrial basis. Dichloroacetate restores oxidative me-

abolism in fawn-hooded rat PASMCs, shifting them away
rom the proliferative/apoptosis resistant glycolytic state.
ichloroacetate also causes regression of PAH induced by

hronic hypoxia or monocrotaline (51,56,57).
hoA/ROCK-mediated vasoconstriction. It is now clear

hat activation of RhoA/ROCK signaling is a major regu-
ator of vascular tone (63). Smooth muscle cell tension is
etermined primarily by phosphorylation (contraction) and
ephosphorylation (relaxation) of the regulatory myosin

ight chain (MLC), as described in the preceding text. At a
iven level of cytosolic Ca2�, second messenger-mediated
athways can modulate the activity of myosin light chain

inase (MLCK) and myosin light chain phosphatases
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MLCPs) (e.g., MYPT1) to modify MLC phosphorylation
nd force, namely, to modify the Ca2� sensitivity of
ontraction. Two major pathways in vascular smooth muscle
SM) are inhibition of MLCP action by ROCK-mediated
hosphorylation of MYPT1, and protein kinase C-mediated
hosphorylation and activation of the MLCP-inhibitor pro-
ein CPI-17.

Desensitization of Ca2� is also a mechanism of vasodi-
ation. Besides inducing SMC relaxation by desensitizing
eceptors and decreasing cytosolic [Ca2�] and MLCK
ctivity, the NO/soluble guanylate cyclase/cGMP/PKG
athway also decreases Ca2� sensitivity by phosphorylating
nd inactivating RhoA protein, or by directly phosphory-
ating MLCP, which increases MLCP activity (3). Sim-
larly, vasodilation by stimuli that activate the adenylate
inase/cyclic adenosine monophosphate/PKA pathway is
lso attributable partly to inhibition of RhoA/ROCK
ignaling (3).
hoA/ROCK in acute pulmonary vasoconstriction.
OCK-mediated Ca2� sensitization is necessary for the

ustained phase of acute hypoxic pulmonary vasoconstric-
ion (64). Similarly, hypoxia directly activates RhoA in
ultured PASMCs (65). Many studies have demonstrated
he participation of ROCK in acute pulmonary vasocon-
triction due to a variety of stimuli.
hoA/ROCK in human PAH. Studies of RhoA/ROCK

ignaling in human PAH are limited. Low intravenous
oses of fasudil acutely cause modest decreases in pulmonary
ascular resistance in patients with PAH (66). Clinical trials
xamining the inhibition of RhoA/ROCK are under way.

rosstalk Between Vascular Cells

hether SM hyperplasia results from inherent characteris-
ics of PASMCs or from dysregulation of molecular events
hat govern PASMC growth, such as signals originating
rom PAECs, remains an open question (67). In addition,
here is evidence of crosstalk between adventitial cells and
edial SMCs.
Endothelial dysfunction in PAH may follow excessive

elease of paracrine factors that act either as growth factors
o induce PASMC proliferation or as chemokines to recruit
irculating inflammatory cells (44,68). Thus, exposure of
ASMCs to culture medium from PAECs induces
ASMC proliferation, and this effect is exaggerated when
AECs from patients with PAH are used (44).
The role of ECs in angiogenesis and remodeling is now

etter understood (69,70). In maturation, ECs no longer
roliferate or migrate but promote vessel stabilization by
ecruiting periendothelial support cells, which differentiate
nto SM-like cells (71). Failure of interactions between the

cell types, as seen in numerous genetic mouse models,
esults in severe and often lethal cardiovascular defects.
eficiencies in this process may lead to abnormal dilation of

esistance pulmonary vessels, such as that seen in hereditary

emorrhagic telangectasia. Several studies suggest that the w
rosstalk between PAECs and PASMCs may be under the
ontrol of diverse pathways including the angiopoietin-1/
IE2, transforming growth factor (TGF)-�/activin-

eceptorlike kinase (ALK)-1, and bone morphogenetic pro-
ein (BMP)/BMPR-II pathways (21,22,72). PAECs
onstitutively produce and release excessive amounts of
oluble factors that act on PASMCs and inflammatory
irculating cells to initiate or enhance pulmonary vascular
emodeling and inflammation.

ellular and Molecular
onsequences of BMPR-II Mutation

utations in the BMPR2 gene have been found in �70%
f families with PAH (73,74). In addition, up to 25% of
atients with apparently sporadic IPAH harbor muta-
ions (75).

ormal BMP/TGF-� signaling. BMPs are the largest
roup of cytokines within the TGF-� superfamily (76).
MPs are now known to regulate growth, differentiation,
nd apoptosis in a diverse number of cell lines (77). The
GF-� superfamily type II receptors are constitutively

ctive serine/threonine kinases. BMPR-II initiates intracel-
ular signaling in response to specific ligands (78). Ligand
pecificity for different components of the receptor complex
ay have functional significance to the tissue-specific nature

f BMP signaling (79,80). Recently, BMP9 was identified
s a ligand that signals through a complex comprising
MPR-II and ALK-1 (81). This important finding might
rovide a mechanism for the rare occurrence of severe PAH
n some families with hereditary hemorrhagic telangiectasia
ue to ALK-1 mutations (82). After ligand binding, the
ype II receptor phosphorylates a glycine-serine–rich do-
ain on the proximal intracellular portion of an associated

ype I receptor (usually BMPR-IA [ALK-3] or BMPR-IB
ALK-6]). Activated type I receptors in turn phosphorylate
ytoplasmic signaling proteins known as Smads, which are
esponsible for TGF-� superfamily signal transduction (83).
MPs signal through a restricted set of receptor-mediated
mads (R-Smads), Smads-1, -5, and -8, which must com-
lex with the common partner Smad (Co-Smad), Smad-4,
o translocate to the nucleus. Switching off Smad signaling
n the cell is achieved by Smad ubiquitination and regulatory
actors (Smurfs) (84) and by recently identified Smad
hosphatases (85).
he consequences of BMPR2 mutation for BMP/
GF-� signaling. The mechanism by which BMPR-II
utants disrupt BMP/Smad signaling is heterogeneous and
utation specific (86). Of the missense mutations, substi-

ution of cysteine residues within the ligand binding or
inase domain of BMPR-II leads to reduced trafficking of
he mutant protein to the cell surface. At least for the ligand
inding domain mutants, the mistrafficking can be rescued
ith chemical chaperones, resulting in improvements in
mad signaling (87). In contrast, noncysteine mutations

ithin the kinase domain reach the cell surface but fail to
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ctivate Smad-responsive luciferase reporter genes. Many
utations lead to nonsense-mediated mRNA decay of the
utant transcript, leading to a state of haploinsufficiency.
ASMCs from mice heterozygous for a null mutation in the
MPR2 gene are also deficient in Smad signaling (88,89).
hus, haploinsufficiency or missense mutation leads to a loss
f signaling by the Smad1/5 pathway in response to BMP2
nd BMP4. However, marked siRNA knockdown of
MPR-II leads to increased Smad signaling in response to

ome ligands, for example, BMP7 (80,89). This effect is
ediated by increased signaling through the ActR-II recep-

or. In PASMCs, BMPR-II appears to mediate growth
nhibition and differentiation, whereas ActR-II mediates
steoblastic differentiation (90).
tudies of BMP signaling cells and tissues from PAH
atients. In the lung, BMPR-II is highly expressed on the
ascular endothelium of the PAs (91) and at a lower level in
ASMCs and fibroblasts. The expression of BMPR-II is
arkedly reduced in the pulmonary vasculature of patients
ith mutations in the BMPR-II gene (91). BMPR-II

xpression is also reduced in the pulmonary vasculature of
atients with IPAH in whom no mutation in the BMPR2
ene was identified. A reduction in the expression of
MPR-II may be important to the pathogenesis of PAH,
hether or not there is a mutation in the gene. In addition,

ince the level of BMPR-II expression in familial cases was
onsiderably lower than predicted from the state of haplo-
nsufficiency, this suggests that some additional environ-

ental or genetic factor may be necessary to further reduce
MPR-II expression below a threshold that triggers vascu-

ar remodeling.
Phosphorylation of Smad1/5 is also reduced in the

ulmonary arterial wall of patients with underlying
MPR-II mutations and in patients with IPAH with no

dentifiable mutation (92). The response of PASMCs to
MP ligands depends to some extent on the anatomical
rigin of cells. The serum-stimulated proliferation of cells
arvested from the main or lobar PAs tends to be inhibited
y TGF-�1 and BMPs 2, 4, and 7 (92). Indeed, BMPs may
nduce apoptosis in these cells (93). The growth inhibitory
ffects of BMPs have been shown to be Smad1 dependent
92). In contrast, in PASMCs isolated from PAs of 1 to 2
m diameter, BMPs 2 and 4 stimulate proliferation (92).
his pro-proliferative effect of BMPs is dependent on the

ctivation of ERK1/2 and p38MAPK. Both Smad and
APK pathways are activated to a similar extent in cells

rom both locations, but the integration of these signals by
he cell differs. This integration may be at the level of an
mportant family of transcription factors, the inhibitors of

NA binding (Id genes) (94).
The response of vascular ECs to BMPs is dependent on

he specific BMP ligand. Endothelial cells proliferate, mi-
rate, and form tubular structures in response to BMP4 and
MP6 (95). In addition, BMPs in general protect endothe-

ial cells from apoptosis (96). Interestingly, BMP9, which

cts through BMPR-II and ALK-1, seems to inhibit (
AEC proliferation. Knockdown of BMPR-II with siRNA
ncreases the susceptibility of PAECs to apoptosis (96).

The contrasting effects of BMPs in pulmonary vascular
Cs and the underlying PASMCs provide a hypothesis for
ulmonary vascular damage and remodeling in familial
AH. A critical reduction in BMPR-II function in the
ndothelium may promote increased endothelial apoptosis,
hich compromises the endothelial barrier. This would

llow ingress of serum factors and stimulate activation of
ascular elastases. High rates of apoptosis in the endothe-
ium could favor the development of apoptosis-resistant
lones of ECs and lead to plexiform lesion formation. In the
nderlying media, PASMCs already compromised in their
bility to respond to the growth-suppressive effects of BMPs
re exposed to growth factors stimulating proliferation.
MP signaling in rodent models of PAH. Reduced
RNA and protein expression of BMPR-II have been

eported in the lungs of animals with experimental PH
97,98). In the monocrotaline rat model, adenoviral delivery
f BMPR-II through the airways failed to prevent PH (99).
owever, targeted gene delivery of BMPR-II to the pul-
onary endothelium did significantly reduce PH in chron-

cally hypoxic rats (100).
Studies in knockout mice reveal the critical role of the

MP pathway in early embryogenesis and vascular devel-
pment (101). However, heterozygous BMPR-II �/�
ice survive to adulthood with no discernable phenotype

88). When heterozygotes are exposed to lung overexpres-
ion of interleukin-1� (102) or chronically infused with
-HT (88), they develop more PH compared with wild-
ype littermates. Thus, BMPR-II dysfunction increases the
usceptibility to PH when exposed to other environmental
timuli. The relatively low penetrance of PAH within
amilies supports a “two-hit” hypothesis, in which the
ascular abnormalities are triggered by accumulation of
enetic and/or environmental insults in a susceptible person.

Transgenic mice overexpressing siRNA targeting
MPR-II exhibit �10% of the normal levels of BMPR-II
uring development. These mice survive but do not develop
pontaneous PAH. Intriguingly, they display a phenotype
uggestive of hereditary hemorrhagic telangiectasia, with
ascular ectasia and anemia (103). Conditional overexpres-
ion of a dominant negative kinase domain mutant
MPR-II in vascular SMCs of adult mice causes increased
ulmonary vascular remodeling and PH (104). Conditional
nockout of endothelial BMPR-II in adult mice has also
een shown to predispose to PH (105).

he Extracellular Matrix

he extracellular matrix (ECM) not only represents a
ubstrate for tissue morphogenesis, but also instructs almost
ll forms of cell behavior at the biophysical and biochemical
evels through interactions with multiple receptors, includ-
ng heterodimeric integrins composed of � and � subunits

106). Importantly, major qualitative and quantitative
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hanges in the ECM underscore a number of human
athologies, including cancer and PAH. Functional differ-
ntiation of the breast epithelium relies upon contact with
n appropriate basement membrane by �1 integrins that
romote both proper cell polarity and patterns of gene
xpression (107). Similarly, the underlying ECM dictates
hether human stem cells will differentiate into adipocytes
r osteoblasts (108). In this instance, differentiation relies
pon cytoskeletal tension generated by RhoA and ROCK.
any studies highlight the critical importance of under-

tanding the reciprocal relationships between the ECM and
ignaling pathways, such as Rho GTPases. The connections
etween integrins, ECM ligands, and actin-based micro-
laments inside the cell are indirect and are linked through
caffolding proteins, such as talin, paxillin, and �-actinin
106). These scaffolds activate or recruit numerous signaling
olecules, including focal adhesion kinase and Src kinase

amily members, which then phosphorylate their substrates
109).

enascin-C in PAH. Tenascin-C, a large ECM glyco-
rotein, is expressed within the medial SMC layer of injured
nd remodeling PAs from hypertensive animals (110) and
umans (111,112). It surrounds proliferating PASMCs
ithin arteries from hypertensive individuals (110,111).
urthermore, tenascin-C promotes PASMC proliferation
nd survival. For example, exogenous tenascin-C protein
mplifies the SMC proliferative response to soluble growth
actors, including epidermal growth factor and basic fibro-
last growth factor (110), by promoting clustering and
ctivation of receptor tyrosine kinases, such as epidermal
rowth factor receptors (113). Moreover, studies using
solated PASMCs and PAs from monocrotaline-exposed
ypertensive rats revealed that suppression of tenascin-C
sing an antisense approach induces SMC apoptosis and
egression of pulmonary vascular lesions (114).

rigins of the Myofibroblast in PAH

ulmonary hypertension is characterized by cellular changes
n the walls of PAs. Virtually all of these changes are
haracterized by increased numbers of cells expressing �-
M actin (115). It has been thought that the SM-like cells
hat express �-SM actin and accumulate in vascular lesions
ere derived from the expansion of resident vascular SMCs
r adventitial fibroblasts. However, new data suggest other
ossible sources of �-SM actin-expressing cells (SM-like
ells and/or myofibroblasts) in various vascular diseases.
irculating progenitor cells can assume an SM-like pheno-

ype (116). Resident vascular progenitor cells have also been
emonstrated to express SM-like characteristics in several
ascular injury states (117). Finally, the possibility that both
pithelial and endothelial cells have the capability of tran-
itioning into a mesenchymal or SM-like phenotype has
een raised.
ndothelial-mesenchymal transition. The term endothelial-

esenchymal transition (EnMT), rather than transformation e
r transdifferentiation, relates to epithelial biology, where the
rocess of epithelial-mesenchymal transition has been more
horoughly investigated. Epithelial-mesenchymal transition is
process in which epithelial cells lose cell-to-cell contacts and
olarity and undergo dramatic remodeling of the cytoskeleton
118), with repression of epithelial markers. Concurrently, cells
egin to express mesenchymal antigens, including FSP-1,
-SM actin, fibronectin, and types I and III collagens, and
anifest a proliferative and migratory phenotype. The transi-

ion of epithelial cells toward a mesenchymal phenotype occurs
uring embryonic development, and recent data suggest that
pithelial-mesenchymal transition is important in cancer biol-
gy. A role for epithelial-mesenchymal transition during tissue
njury leading to organ fibrosis is also becoming clear.

Less is known regarding EnMT than epithelial-
esenchymal transition. However, several groups have pro-

ided evidence that EnMT is critical in aortic and PA
evelopment (119). Endothelial cells labeled at an early
tage of development appear later (at the onset of SMC
ifferentiation) in the subendothelial space of the develop-
ng aorta and express �-SM actin (120). Morphologic
tudies in human embryos suggest that endothelial-like cells
ay give rise to SMC during the maturation of both PAs

nd veins (121). Findings in experimental wound repair
ave suggested that EnMT may also take place in the adult.
imilarly, microvascular ECs transition into mesenchymal
ells in response to chronic inflammatory stimuli (122). A
ole for EnMT in the neointimal thickening observed in
ransplant atherosclerosis and restenosis has also been sug-
ested (120).

Endothelial cells from a variety of vascular beds retain the
apability of transitioning into mesenchymal or even SM-
ike cells under several culture conditions (119). Endothelial
ells derived from the adult bovine aorta convert to spindle-
haped �-SM actin-expressing cells when treated with
GF�-1(123). Human dermal microvascular ECs can be

nduced to transform into myofibroblasts in vitro, after
ong-term exposure to inflammatory cytokines (124). Re-
ent studies have demonstrated that hypoxia is also capable
f inducing transdifferentiation of PAECs into myofibro-
last or SM-like cells in a process regulated by myocardin
125).

irculating Mesenchymal Progenitor
ells in Pulmonary Vascular Remodeling

one marrow-derived circulating cells, known as fibrocytes,
ay be a source for myofibroblast accumulation during

eparative processes in the lung (126). Fibrocytes are mes-
nchymal progenitors that coexpress hematopoietic stem
ell antigens, markers of the monocyte lineage, and fibro-
last products. They constitutively produce ECM compo-
ents as well as ECM-modifying enzymes and can further
ifferentiate into myofibroblasts. These cells can contribute
o the new population of fibroblasts and myofibroblasts that

merge at tissue sites during normal or aberrant wound
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ealing, in ischemic or inflammatory fibrotic processes, and
s part of the stromal reaction to tumor development (127).

The fibrocyte may differentiate into mature mesenchymal
ells in vivo. Differentiation of fibrocytes into myofibro-
lastlike cells occurs where there is increased production of
GF�-1 and/or endothelin. In these settings, fibrocytes or
brocyte precursor cells demonstrate downregulation of

eukocytic markers (e.g., CD34 and CD45) with a concom-
tant upregulation of mesenchymal markers. A causal link
etween accumulation of fibrocytes at injured sites and
ngoing tissue fibrogenesis or vascular remodeling has been
rovided in animal models of pulmonary disease (116).
nhibition of fibrocyte accumulation results in reduced
ollagen deposition and reduced accumulation of myofibro-
lasts. In the chronically hypoxic rat, monocyte/fibrocyte
epletion markedly attenuated pulmonary vascular remod-
ling (116).

The transition of any cell type including ECs, progenitor
ells, fibroblasts, or even SMC into a myofibroblast becomes
elevant to a better understanding of PH, as myofibroblasts
an generate long-lasting constriction regulated at the level
f Rho/Rho-kinase–mediated inhibition of MLC phospha-
ase (128). Thus, cells that have transitioned into fibroblast-
ike and myofibroblastlike cells may play a role in the
nability of the vessel wall to dilate in response to traditional
asodilating stimuli.
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