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Treatment of Pulmonary Arterial Hypertension
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Over the past 2 decades, pulmonary arterial hypertension has evolved from a uniformly fatal condition to a
chronic, manageable disease in many cases, the result of unparalleled development of new therapies and ad-
vances in early diagnosis. However, none of the currently available therapies is curative, so the search for new
treatment strategies continues. With a deeper understanding of the genetics and the molecular mechanisms of
pulmonary vascular disorders, we are now at the threshold of entering a new therapeutic era. Our working group
addressed what can be expected in the near future. The topics span the understanding of genetic variations,
novel antiproliferative treatments, the role of stem cells, the right ventricle as a therapeutic target, and strate-
gies and challenges for the translation of novel experimental findings into clinical practice. (J Am Coll Cardiol
2009;54:S108–17) © 2009 by the American College of Cardiology Foundation

ublished by Elsevier Inc. doi:10.1016/j.jacc.2009.04.014
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enetic Variations
n Pulmonary Arterial Hypertension

ulmonary arterial hypertension (PAH) is characterized
y extensive narrowing of the pulmonary vascular bed,
eading to a progressive increase in pulmonary vascular
esistance, right ventricular (RV) afterload, and cardiac
ailure. Vasoconstriction, structural changes in the vessel
all (remodeling), and thrombosis contribute to the

ncreased pulmonary vascular resistance. In advanced
isease, this process involves proliferation and hyperpla-
ia of endothelial and smooth muscle cells (SMCs), with
n increase in the extracellular matrix. A variety of
rowth factors and their receptors, neurohormones, and
ytokines can produce these morphologic changes. The
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evels of these mediators are determined, in part, by their
espective gene expression. Variations in the genes coding
or (or regulating expression/activity of) bone morphoge-
etic protein receptor type 2 (BMPR2), serotonin (5-
T), serotonin transporters (SERT), prostacyclin (PGI2)

eceptors, PGI2 synthase, voltage-dependent potassium
hannel (Kv) 1.5, nitric oxide (NO), endothelin (ET)-1,
T-1 receptors A and B (ETA and ETB), and reactive
xygen species (ROS) may be relevant in PAH. Accord-
ngly, understanding the genetic regulation of these
roteins, including the roles of genetic polymorphisms
nd mutations, may provide useful insight into pathogen-
sis, prognosis, and treatment of PAH.

enetic polymorphisms with potential relevance to
AH. BMPR2. BMPR2 is a member of the transforming
rowth factor (TGF)-� family. Studies suggest that
MPR2 suppresses growth in vascular tissue (i.e., SMCs)

1,2). Isolated vascular SMCs from patients with idiopathic
ulmonary arterial hypertension (IPAH) show enhanced
ell proliferation (3). Several mutations in the coding
equences (13 exons) have been identified in the BMPR2
ene, including deletion/insertion, nonsense, and missense
4,5). Strong evidence has established an association be-
ween BMPR2 polymorphisms and familial PAH and
PAH (6–9). Inactivating heterozygous mutations are dis-
ributed throughout the BMPR2 gene in at least 70% of

atients with a family history of PAH (i.e., familial heritable
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AH) and have also been detected in 3.5% to 40% of
poradic cases of heritable PAH (10–13).

MAD PROTEINS. Activated BMP receptors phosphorylate a
et of BMP-restricted Smad protein, (Smad1, 5, and 8)
14,15), which then complex with the common partner
mad4 and translocate into the nucleus to regulate transcrip-
ion of target genes (16). Many of the Smad-responsive genes
ncode for proteins that inhibit cell growth and induce apo-
tosis (17). Thus it has been proposed that BMPR2 signaling
ubserves a growth regulatory function in pulmonary vascular
ells, inhibiting the proliferation and possibly enhancing apo-
tosis in SMCs. Mutations that interfere with BMPR2 sig-
aling would enhance vascular remodeling. Genetic variations

n the Smad4 gene have been identified in different forms of
ancer (18–21). Two missense mutations in the Smad4
mino-terminal domain, L43S and R100T, result in proteins
hat are not efficiently translocated to the nucleus and, conse-
uently, produce severely defective transcriptional responses to
pecific TGF ligands (22).

T-1, ETA, AND ETB. ET-1 has been implicated in the patho-
enesis of multiple vascular abnormalities, including PAH
23). ET-1 is believed to act in a paracrine manner on two
-protein–coupled receptors (GPCRs), ETA and ETB, but
ith opposite effects (24,25). ETA, which is present on
ascular SMCs, mediates vasoconstriction and proliferation
26). ETB is found predominantly on endothelial cells, where
t promotes vasodilation by releasing NO, PGI2, or other
ndothelium-dependent vasodilators (27,28).

Six polymorphisms in the ETA receptor gene and 3 in the
TB receptor gene have been identified (29), which may

xplain some of the differential response to drugs. Alleles at the
ifferent polymorphic sites were similarly distributed in
atients with myocardial infarction (MI) and controls. A
/T substitution located in the nontranslated part of exon 8
f the ETA receptor gene was associated with pulse pres-
ure. A G/T polymorphism (ET1 K198N) in the ET-1
ene strongly interacted with body mass index in the
etermination of blood pressure levels. The T allele was
ssociated with an increase of blood pressure in overweight
ubjects. An insertion/deletion polymorphism in the un-
ranslated region of exon 1 of the ET-1 gene was correlated
ith parameters of essential hypertension (30). Polymor-
hisms of the ET system have also been correlated with
ilated cardiomyopathy (31). The H323H (C/T) polymor-
hism in exon 6 of the ETA receptor gene was significantly
ssociated with a shorter survival time after diagnosis.
nfluences of polymorphisms in the ETA and ETB receptor
enes on aortic stiffness and left ventricular geometric and
adial artery parameters were analyzed in 528 never-treated
ypertensive subjects. ETA receptor polymorphism G231A
nd the ETB receptor polymorphism 30G/A receptor gene
ariants influenced pulse wave velocity levels in women. In
en, the ETB L277L receptor gene polymorphism variant

as also related to radial artery parameters (32). G
O. NO dilates pulmonary and
ystemic vessels and inhibits vas-
ular cell growth. There are 3
soforms of the enzyme: endo-
helial NO synthase (eNOS), in-
ucible NO synthase, and neuro-
al NO synthase, and all are
xpressed in the lung. Altered
NOS expression has been asso-
iated with systemic and pulmo-
ary hypertension (33–35) and
ltered vascular remodeling
36,37). Decreased expression of
NOS in the pulmonary vascular
ndothelium of patients with
ost forms of PAH suggests that

ustained attenuation of pulmo-
ary vascular NO production is
ssociated with clinically signifi-
ant alterations in pulmonary
ascular tone (38). The eNOS
lu298Asp polymorphism is re-

orted to be a strong risk factor
or coronary artery disease and
ypertension (39). Moreover,
his Glu298Asp polymorphism is
ssociated with reduced basal
O production (40). A new

olymorphism in the promoter
f the eNOS gene (�786 T/C)
ignificantly reduces its promoter
ctivity (41). This mutation af-
ects coronary arterial vasoreac-
ivity by reducing endothelial
O synthesis.
PCRs. G proteins are essential

artners of multiple transmem-
rane receptors for the activation
r inhibition of intracellular sig-
aling cascades. More than one-
alf of all drugs target GPCRs and
ither activate or inactivate them.
he GPCRs consist of �, �, and �

ubunits, which are intracellular
ignals for stimuli such as hor-
ones and chemokines. These

timuli activate GPCR by induc-
ng or stabilizing a new confor-

ation in the receptor (42).
Mutations in genes encoding
PCR can cause loss of function

y impairing any of several steps
n the normal GPCR/guanosine
riphosphatase (GTPase) cycle
43). Polymorphisms in the

Abbreviations
and Acronyms

ANP � atrial natriuretic
peptide

BMP � bone
morphogenetic protein

BMPR2 � bone
morphogenetic protein
receptor type 2

BNP � brain natriuretic
peptide

EGFR � epidermal growth
factor receptor

EPC � endothelial
progenitor cell

eNOS � endothelial nitric
oxide synthase

ET � endothelin

ETA � ET-1 receptor A

ETB � ET-1 receptor B

G�s � G� subunit

GPCR � G-protein–coupled
receptor

5-HT � serotonin

IPAH � idiopathic
pulmonary arterial
hypertension

Kv � voltage-dependent
potassium channel

MCT � monocrotaline

MI � myocardial infarction

NADPH � nicotinamide
adenine dinucleotide
phosphate

NO � nitric oxide

PAH � pulmonary arterial
hypertension

PASMC � pulmonary artery
smooth muscle cell

PDGF � platelet-derived
growth factor

PET � positron emission
tomography

PGI2 � prostacyclin

PH � pulmonary
hypertension

ROS � reactive oxygen
species

RV � right ventricular

SERT � serotonin
transporter

SMC � smooth muscle cell

TGF � transforming growth
factor

VEGF � vascular
PCR signaling pathway have

endothelial growth factor
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een identified in the G protein � subunit (G�s) (44) and
n the G protein �3 subunit (45). The G�s polymorphism
eads to constitutively active �-subunit, and overexpression
f G�s induces hypertrophy and heart failure. Several
tudies suggest an association of the �-subunit of G proteins
ith hypertension (46). A study has demonstrated the

ssociation between a common silent polymorphism T393C
n GNAS1 and hypertension. T/C substitution at position
93 in exon 5 changes mRNA folding structures (47). The
393C GNAS gene polymorphism was found to be more

ommon in 268 white hypertensive patients than in 231
atched control subjects (41). Recently, a polymorphism in

he G protein �3 subunit gene (GNB3) exchanging cytosine
o thymidine (C825T) has been discovered in selected
atients with essential hypertension and considered as a
andidate mutation for both arterial hypertension and ath-
rosclerosis (48). The T allele of the GNB3 polymorphism
as been associated with increases in signal transduction.

ICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE (NADPH)

XIDASE SYSTEM. The ROS play important roles as signaling
olecules in vascular cells, and NADPH oxidases contribute

o ROS production within the vasculature (49). Enhanced
roduction of ROS, especially •O2

–, also decreases NO bio-
vailability (50).

The NADPH oxidase consists of 4 subunits (p22phox,
p91phox, p47phox, and p67phox), and a substantial pro-
ortion of the ROS generated in endothelial cells appear to
e intracellular (51). Enhanced vascular NADPH oxidase
ctivity is associated with upregulation of p22phox mRNA
n several models of hypertension, including the spontane-
usly hypertensive rat (52). Several polymorphisms for the
22phox subunit have been described and are associated
ith coronary artery disease (53,54). A polymorphism in the
romoter of the p22phox gene has been identified (�930
/G) and has been associated with hypertension (55,56).

-HT. 5-HT is a neurotransmitter that is a potent pulmo-
ary vasoconstrictor and smooth muscle cell mitogen (57).
ulmonary vascular lesions in PAH display markedly ele-
ated levels of SERT, and explanted pulmonary vascular
MCs exhibit increased 5-HT uptake, implicating SERT

n vascular remodeling. Recent studies have shown that
ultured pulmonary artery SMCs from patients with IPAH
emonstrate a greater proliferative response to 5-HT in
omparison with cells from subjects without PAH (58). The
ulmonary vasoconstrictor effects of 5-HT are produced via
inding to receptors, and the mitogenic actions of 5-HT are
ransduced via the SERT pathway (59,60). An insertion/
eletion polymorphism in the promoter region of the
ERT gene with long (L) and short (S) forms affects
ERT expression and function, with the L allele driving
2- to 3-fold higher rate of gene transcription than the
allele (61). This polymorphism has been associated

ith PAH (62), as the LL variant is more frequent in

atients with PAH. The L-allelic variant of the SERT T
ene promoter was present in homozygous form in 65%
f patients but in only 27% of controls. Moreover, SMCs
rom the pulmonary artery of PAH patients with the LL
olymorphism are highly proliferative in response to
-HT, compared with cells from IPAH patients without
he LL genotype.
GI2. PGI2 is produced by the action of PGI2 synthase on
rachidonic acid in endothelial cells. PGI2 synthase activity
nd PGI2 levels are reduced in patients with PAH, which
eads to a relative deficiency of its potent vasodilatory and
ntiproliferative effects (63). Patients with severe PAH have
n imbalance in the local production of PGI2 and reduced
xpression of PGI2 synthase (63,64). In vivo studies in mice
ave demonstrated that overexpression of PGI2 synthase
rotects against hypoxia-induced pulmonary hypertension
PH) (65). Several polymorphisms for the PGI2 synthase
ene have been described. One polymorphism resulting in
n altered PGI2 synthase protein sequence (a nonsense
utation in exon 2) has been observed in a family with

ssential hypertension and cerebral infarction (66) and 3
issense mutations in the coding sequence (P38L, S118R,

nd R379S) and 1 in the promoter region of the PGI2

ynthase (R6) (67). The human PGI2 receptor is a GPCR
hat plays an important role in vascular homeostasis. Two
GI2 receptor polymorphisms have been identified in the
oding sequence, the V25M and the R212H. Recent
enetic analyses have revealed 2 polymorphisms within the
oding sequence, V25M and R212H of the PGI2 receptor.
n in vitro experiments, the R212H variant has been
ssociated with a significant decrease in binding affinity for
GI2 and G-protein activation versus the wild-type recep-

or (68).
v. Membrane potential is an important regulator of in-

racellular free calcium concentration ([Ca2�]i) and pul-
onary vascular tone. The pore-forming �-subunit, Kv1.5,

n human pulmonary artery SMCs (PASMCs) plays an
mportant role in regulating membrane potential, vascular
one, and PASMC proliferation (69,70). Inhibition of
v1.5 expression and function has been implicated in
ASMCs from patients with IPAH (71,72). Recently,
everal genetic variations in the Kv1.5 channel gene
KCNA5) have been identified (73). Remillard et al. (73)
howed an association between allele frequency of the
ingle-nucleotide polymorphisms no. 4 (T-937a) and 17
G2870a) in the KCNA5 gene and NO response in patients
ith IPAH, suggesting that variations in KCNA5 tran-

criptional regulation may affect pulmonary vascular reac-
ivity to vasodilators in patients with IPAH.

ATRIURETIC PEPTIDES. The natriuretic peptide family
omprises 3 major members, atrial or A-type (ANP), brain
r B-type (BNP), and C-type, which interact with 3
eceptor subtypes, NPR-A, NPR-B, and NPR-C (74).
oth ANP and BNP reduce elevated pulmonary vascular

one and attenuate hypoxia-induced PH in mice (74–76).

hus, overexpression of ANP may protect against some
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orms of experimental PH (75). Several genetic variations
ave been described for the ANP and the BNP genes
77,78). A significant association has been demonstrated
etween a GT repeat in intron 2 of the NPR-B gene with
ssential hypertension (79). A recent study showed an
ssociation between ANP/NPRA gene polymorphisms and
eft ventricular structure in human essential hypertension
77). This study showed that the ANP–C664G and the
PRA polymorphisms, both in the promoter region, have a

ignificant effect on left ventricular MI in patients carrying
he mutant alleles.
harmacogenomics in PAH. Clinicians and the lay public
ccept the notion that not all patients respond to drug
herapy in the same fashion. Genetic polymorphisms in
rug-metabolizing enzymes, transporters, receptors, and
ther drug targets have been linked to interindividual
ifferences in the efficacy and toxicity of many medications.
harmacogenomics and pharmacogenetics can lead to
NA-based tests to improve drug selection, identify opti-
al dosing, maximize drug efficacy, and minimize toxicity.
or some drugs, there are clear implications of genetic

nformation for drug therapy to avoid toxicity and to
ptimize response (80,81). In addition, understanding ge-
etic contributors to variability in drug response provides a
ew tool in drug development that carries the hope of
ecreasing the risk for unexpected toxicities, identifying
atients most likely to respond, and streamlining drug
evelopment (82). This is a relatively new area of study in
AH, and a large study investigating pharmacogenomics in
AH is now underway.

ntiangiogenesis Strategies for PAH

ngiogenesis in PAH. The role of angiogenesis in PAH
emains controversial (83). In support of dysregulated an-
iogenesis, circulating and platelet levels of vascular endo-
helial growth factor (VEGF) are increased in PAH and are
urther increased with prostanoid treatment (84,85). In
upport of this hypothesis, Tuder et al. (86,87) cite evidence
f increased VEGF, VEGF receptor 2, endothelial cell
onoclonality, loss of tumor suppressor genes in endothelial

ells, and diminished endothelial cell apoptosis.
The converse hypothesis is that angiogenesis is protective

n PH. This hypothesis is supported by the demonstration
hat inhibition of angiogenesis factors (VEGF receptor 2)
romotes hypoxia-induced PH, whereas overexpression of
roangiogenesis factors (VEGF, angiopoeitin-1) reduces
nd/or reverses monocrotaline (MCT) and hypoxic PH
88,89).

Other angiogenic pathways that may play a role in PAH
nclude the epidermal growth factor receptor (EGFR).

CT-induced PH in rats was attenuated by an EGFR
nhibitor (90). Thalidomide inhibits angiogenesis through
s yet undetermined pathways and has been used in some
atients with polyneuropathy, organomegaly, endocrinopa-

hy, monoclonal gammopathy, and skin changes (POEMS fi
yndrome) and multiple myeloma with mixed results
91,92). In rats with severe PAH, thalidomide failed to
mprove PH (93).

Statins decrease angiogenesis in systemic atherosclerotic
ascular disease (94). In MCT, hypoxia, and VEGF recep-
or blockade � hypoxia models, statins inconsistently atten-
ate PAH (95–98). One clinical study of statins in PAH
uggested improvement (99).
ntiangiogenesis strategies. Antiangiogenesis strategies

an approach the pathway from several different angles. The
EGF is the most well-studied angiogenesis factor, and

everal antiangiogenesis strategies to date target either
EGF itself or its receptors. Bevacizumab (anti-VEGF

ntibody) is approved for the treatment of colorectal and
onsmall-cell lung cancers as an adjuvant to conventional
hemotherapy. Unfortunately, bevacizumab has been asso-
iated with increased risk of vascular events, including acute
ypertension and cerebrovascular and coronary events, es-
ecially in patients with established disease or risk factors
or vascular disease. The mechanism of these complications
s not known (100,101).

The oral multireceptor tyrosine kinase inhibitors
unitinib and sorafenib are used in the treatment of renal
nd gastrointestinal tumors. These agents act to inhibit the
EGF receptor and have also been associated with acute

ystemic hypertension and cardiac ischemia (102). Sorafenib
as been evaluated in a rodent model of PAH (103).
etuximab (monoclonal antibody that binds to the EGFR)

s approved for use in head and neck and colorectal cancers.
anitumumab is another anti-EGFR antibody used in
olorectal cancer. Cetuximab has been associated with fatal
ardiac arrest in one patient (101).

Angiogenesis may also be a target of inhibitors of
ammalian target of rapamycin, which signals through
I3K/AKT. Inhibition of mammalian target of rapamycin
ith rapamycin decreased hypoxia-induced angiogenesis

nd neointimal formation in systemic arteries (104,105). In
odels of PH, rapamycin has been reported to attenuate

ypoxic PH and either has had no effect (when combined
ith a statin) or has attenuated MCT-induced PH associ-

ted with decreased pulmonary vascular resistances and
nhibition of neointimal formation (98,106–108).

nresolved questions
. In PAH, is angiogenesis protective, harmful, or both?
. What angiogenic targets should be considered?
. Is the risk of treatment-induced heart disease a reason to

abandon antiangiogenesis strategies in PAH?

rowth factor inhibitors: role of platelet-derived growth
actor (PDGF) signaling in PAH. In the MCT rat model
f PH, thrombotic lesions and platelet dysfunction appear
o play significant roles (109). Abnormalities in procoagu-
ant activity and fibrinolytic function due to shear stress may
enerate a thrombogenic surface, with the subsequent de-
elopment of thrombotic lesions. Increased plasma levels of

brinopeptide A- and D-dimers support this hypothesis,
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ith more recent studies suggesting that the interactions
etween platelets and vessels contribute to the vascular
hanges in PAH (109). These perturbations may also
ccelerate vasoconstriction by releasing thromboxane A2,
latelet-activating factor, 5-HT, PDGF, TGF-�, and
EGF.
The PDGF receptor antagonist STI571 (imatinib mesy-

ate) reversed pulmonary vascular remodeling in 2 differ-
nt animal models of PH (110). Up-regulation of the
DGF receptor � was found in both tissue from exper-

mental models of pulmonary hypertension (108) and in
uman lungs from patients with PAH (110,111). In
everal case reports, addition of imatinib to approved
AH drugs was shown to improve pulmonary hemody-
amics and functional capacity of patients with severe
AH (112–114). A recently completed phase II clinical

rial evaluating the safety and efficacy of imatinib mesy-
ate in PAH failed to meet the primary efficacy end point
f improvement in exercise capacity; however, many
econdary end points, including pulmonary hemodynam-
cs, were significantly improved. Phase III randomized
ontrolled trials with tyrosine kinase inhibitors in PAH
re expected to begin soon.

uestions for clinical research

. In addition to PDGF, how significant are various other
growth factors, such as basic fibroblast growth factor,
insulin-like growth factor 1, and epidermal growth factor
(90), in PAH?

. Angiogenesis, apoptosis, and proteolysis may all be
important in the pathobiology of PAH. Is targeting
increased elastase activity using elastase inhibitors
(115,116) another possible strategy that warrants
exploration?

. How, if at all, do growth factor inhibitors interact with
the disease-specific targeted PAH treatments currently
in use?

. Can early intervention with growth factor inhibitors
arrest vascular injury, allowing restoration of endothelial
function?

ndothelial Progenitor Cells/
tem Cells in Lung Repair

egeneration of lung microvasculature may be a novel and
ffective therapeutic strategy for restoring pulmonary hemody-
amics in patients with advanced PAH. Somatic cell-based
ene therapy with eNOS (117) or various angiogenic factors,
ncluding VEGF and angiopoietin-1 (88,118), can reduce

CT-induced PAH in prevention models, possibly by pro-
ecting against endothelial cell apoptosis or inducing microvas-
ular angiogenesis. Delivery of fibroblasts transduced with
NOS significantly improved RV systolic pressure in rats with
stablished PAH, associated with evidence of regeneration of
he lung microcirculation and consistent with the now well-

ccepted role of eNOS and NO in angiogenesis (119–121). h
ecently it has been shown that circulating bone marrow–
erived endothelial progenitor cells (EPCs) play an important
ole in repair of endothelial injury and participate directly in
ostnatal vasculogenesis and angiogenesis in systemic vascular
eds (122,123). The administration of EPCs after MCT-
nduced PAH in rats almost completely prevented the increase
n RV systolic pressure seen with MCT alone (122). Delayed
dministration of progenitor cells after MCT-induced PAH
revented the further progression of PAH, whereas only
nimals receiving EPCs transduced with human eNOS exhib-
ted significant reversal of established disease.

In contrast with these promising results, other experimental
ndings indicate that bone marrow–derived stem cells may
ontribute not only to the maintenance of pulmonary vascular
omeostasis, but to the pathogenesis of PAH as well. Acute,
evere PAH is a frequent complication of allogenic bone
arrow stem-cell transplantation for malignant infantile os-

eopetrosis (124), and late-onset PAH also occurs in associa-
ion with graft-versus-host disease after allogeneic stem-cell
ransplantation (125). These conflicting observations suggest
hat further studies are needed to determine whether stem cells
ave a beneficial role in PAH, which cell types contribute to
he unregulated vessel remodeling, and whether a feasible and
ffordable strategy for vascular lung repair can be developed.

olecular imaging. Monitoring stem cells in vivo remains
roblematic due to limitations of conventional histologic assays
nd imaging modalities. These limitations may be circum-
ented by novel methods of molecular imaging in vivo, encom-
assing micro positron emission tomography (PET) analysis
nd the use of suitable tracers, PET reporter genes, and probes
o monitor both changes in tissue perfusion and stem-cell
oming and engraftment. Noninvasive imaging reporter genes
re useful for many medical and biologic research applications
126,127). The PET reporter genes and probes offer potential
or long-term imaging of therapeutic transgenes and cells in
atients (128). Integration of molecular cell imaging into
tudies of PAH-directed cell therapy holds promise to facilitate
urther growth of the field toward a broadly clinically useful
pplication.
linical impact. A successful cell therapy for lung repair will

equire the development of multiple interconnected strategies
hat will improve stem-cell culturing conditions and enhance
he inherent technological content in Good Manufacturing
ractice cell factories. This will result in the development of
opulations of human stem cells that will make feasible both
asculogenesis and paracrine release of trophic mediators for
he treatment of patients with PAH.

echanisms of RV Remodeling:
eveloping Therapeutic Antiremodeling Strategies

rrespective of the etiology of the PAH, most patients die from
ntractable right heart failure. Despite its profound clinical
onsequences, little is known about RV adaptation and failure
ithin the context of PH. Relatively few mechanistic studies

ave addressed the role of the right ventricle in this disease and,
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pecifically, the role of the interaction of the right ventricle
ith the pulmonary vasculature. Moreover, there is a paucity of

nformation about the interaction between the pulmonary
asculature and the right ventricle (RV–PA coupling). Recent
ata suggest that exercise limitation in PH may primarily be
elated to poor RV–PA coupling.

A critical aspect to the future understanding of the nature
f RV function/failure is to better delineate the differences
nd similarities between RV and left ventricular hypertro-
hy and failure. An understanding of RV hypertrophy and
ailure signaling will allow for future therapies that will
romote the growth of the adult heart (hypertrophy) to
roduce a stable molecular and cellular response to adverse
emodynamic and/or neurohormonal stress. Accordingly,
isrupted intracellular signaling along this signaling axis

eads to decompensation, maladaptive remodeling, and RV
ailure.
AH and the heart. Although the distinctive pathologic
bnormality in PAH is the degree and distribution of the
ulmonary arteriopathy, the level of pulmonary artery
ressure has only modest prognostic significance (129).
ather, it is the ability of the right ventricle to function
nder this increased load that determines both the
everity of symptoms and survival (130). With this in
ind, novel and practical ways to assess the presence and

xtent of subclinical RV failure are desperately needed
efore the stage of overt RV failure. Moreover, the role of
ulmonary vascular stiffening and wave reflectance in
ncreasing RV hydraulic load appears to be under-
ecognized and may be particularly important in other
ypoxemic lung diseases.
ulmonary artery wave reflection as a component of RV

oad. Several studies have shown that the pulsatile load is
ncreased in chronic PH, as suggested by the increased
haracteristic impedance and enhanced wave reflection
131,132). This has generally been attributed to decreased
ulmonary artery compliance and complex changes in re-
ection sites. This abnormal pulsatile load may have detri-
ental effects on ventricular-vascular coupling by increasing

he pulsatile part of ventricular power and thus unfavorably
oading the still-ejecting right ventricle. The role of pulmo-
ary arterial input impedance has been under-recognized in
he past, and there are compelling reasons why this measure
hould now be evaluated.
ardiac hypertrophy and failure. Cardiomyocyte hyper-

rophy occurs in response to an increased load, such as that
ssociated with hypertension and other forms of pressure
verload, or to compensate for loss of myocardial tissue after
I. This response has been considered to be adaptive to

ncreased load, because hypertrophy normalizes the increase
n wall stress induced by mechanical overload. However, in
umans increased cardiac mass is a strong independent risk
actor for morbidity and mortality, and prolongation of this
ypertrophic response in animals inevitably leads, on the
ne hand, to contractile dysfunction and heart failure

hrough poorly understood mechanisms. On the other p
and, normal postnatal growth of the heart or exercise-
nduced cardiac growth also occurs through hypertrophy of
ndividual cardiac muscle cells (133). These forms of so-
alled “physiologic” cardiac hypertrophy are not associated
ith contractile dysfunction and are morphologically and
olecularly distinct from stress-induced hypertrophy.
The distinctions between physiologic hypertrophy and

hat associated with decompensation in response to exces-
ive hemodynamic stressors and increased neurohormonal
timulation, commonly known as “pathologic” hypertrophy,
re many. On the one hand, “pathologic” hypertrophy is
haracterized by large increases in myocyte size and ventric-
lar thickness that is accompanied by increases in interstitial
brosis and the induction of the fetal cardiac gene program.
Physiologic” hypertrophy, on the other hand, is character-
zed by smaller increases in myocyte size and ventricular
hickness, no increase in interstitial fibrosis, and no induc-
ion of the fetal cardiac gene program. In addition, “phys-
ologic” hypertrophy is reversible, whereas “pathologic”
ypertrophy in animals might not be reversible, perhaps as
he result of irreversible damage to the heart, such as loss of
ardiomyocytes by necrosis and apoptosis.

Almost all the pathways studied involving cardiac hyper-
rophy and failure have been studies in the left ventricle,
ith a relative paucity of information validated or confirmed

n the right ventricle. This leaves few answers regarding the
elative importance of many of these pathways in RV failure.

critical aspect of future study will require comparisons in
uman RV samples.
eart failure and oxidative stress. Increased ROS gener-

tion is a major feature of the transition from hypertrophy to
eart failure. In a pro-oxidative environment, the formation
f peroxynitrite from superoxide and NO can occur. Per-
xynitrite in turn promotes NOS3 uncoupling, such that its
ynthase activity is redirected from NO production to the
eneration of superoxide (O2

–). This uncoupling of NOS3
onverts the enzyme from an important prosurvival, antihy-
ertrophic, and proangiogenic (via NO) molecule to one
hat promotes cardiac dysfunction and destruction, includ-
ng maladaptive hypertrophy, extracellular matrix remodel-
ng, and probably myocyte cell death, although such a direct
onnection has not been reported. The target for peroxyni-
rite modification may be the Zn-thiolate cluster of NOS3
tself or the essential cofactor tetrahydrobiopterin (BH4). It
as recently been shown that NOS3 uncoupling occurs in
hronic pressure overload of the left ventricle, and that oral
H4 supplementation restored NO bioavailability, sup-
ressed NO synthase-derived ROS, and prevented both
ardiac dysfunction and maladaptive matrix remodeling
134,135). This may provide a rationale for exploring a
imilar strategy in right heart failure due to PAH.
nfluence of current and emerging PH therapies on RV
unction. With enhanced ability to investigate RV func-
ion, there is interest in evaluating the effects of current
AH therapies on RV function. Expression of RV

hosphodiesterase-5 (PDE5) is increased in patients with



P
a
s
r
s
c
E
t

A

D
f
G
h
a
G
s
p
U
b
D
f
s
P
g
v
r
S
D
s
c
R
N
T
A
A
s
L
S
s

R
P
s
M
E

R

S114 Ghofrani et al. JACC Vol. 54, No. 1, Suppl S, 2009
Future Perspectives June 30, 2009:S108–17
AH, and inhibition of this enzyme improves inotropy in
nimal models. Moreover, magnetic resonance imaging
tudies have shown that sildenafil acutely promotes RV
elaxation. Several other studies have shown improved RV
ystolic and diastolic function in response to acute and
hronic treatment with PGI2 analogs, PDE5 inhibitors, and
T receptor antagonists (136). Further studies are needed

o translate these observations to clinical PAH.
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